——— ФОТОХИМИЯ =

УДК 535.37:539.19:541.14

ЛЮМИНЕСЦЕНЦИЯ СВОБОДНЫХ ОСНОВАНИЙ КОМПЛЕКСОНАТЗАМЕЩЕННЫХ ПРОИЗВОДНЫХ ТЕТРАФЕНИЛПОРФИРИНА И ИХ КОМПЛЕКСОВ С ЛЮТЕЦИЕМ

© 2010 г. Е. Г. Ермолина*, Р. Т. Кузнецова*, Р. М. Гадиров*, Г. В. Майер*, Н. Н. Семенишин**, Н. В. Русакова**, Ю. В. Коровин**

> *Томский государственный университет 634050, Томск **Физико-химический институт им. А.В. Богатского НАН Украины 65080, Одесса, Украина E-mail: kuznetrt@phys.tsu.ru Поступила в редакцию 19.04.2010 г.

Изучены спектры поглощения и люминесценции ряда свободных оснований новых производных тетрафенилпорфирина, содержащих в качестве заместителя в фенильном цикле комплексон или комплексонат лютеция, в сравнении со свойствами незамещенного тетрафенилпорфирина. Измерены квантовые выходы флуоресценции и фосфоресценции растворов изученных соединений при разных температурах. Обсуждается природа полос в спектрах поглощения и люминесценции изученных комплексов, их связь со структурой.

Комплексные соединения макроциклических лигандов с металлами успешно используются для создания солнечных концентраторов, излучающих и зарядопереносных слоев для электролюминесцентных устройств, сенсоров, нелинейных переключателей и ослабителей мощного импульсного излучения [1–3]. Для целенаправленного создания конкретных устройств необходимо исследование связи оптических свойств соединений с их структурой.

Комплексоны способны к эффективному координационному взаимодействию с *d*- или *f*-оболочками редкоземельных металлов. Введение тяжелых атомов, как правило, изменяет заселение триплетных уровней и квантовые выходы фосфоресценции.

Задача настоящей работы — изучение влияния различных заместителей с тяжелым атомом и без него на люминесцентные свойства свободных оснований тетрафенилпорфирина в растворах при различных температурах и возбуждении в различные электронные состояния.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Объектами изучения являются свободные основания аминопроизводного тетрафенилпорфирина (H_2ATPP), содержащие в качестве заместителей свободные комплексоны (этилендиаминтетрауксусную кислоту (EDTA) – 1 или диэтилентриаминпентауксусную кислоту (DTPA) – 2) или соответствующие комплексонаты лютеция (III) – 3, 4. Представлен-

ные соединения изучались в сравнении с незамещенным тетрафенилпорфирином (H₂TPP). Структурные формулы изученных соединений приведены на рис. 1.

Данный ряд объектов выбран с целью выяснения влияния природы гетероатомного заместителя и тяжелого атома на люминесцентные особенности свободных оснований H₂ATPP наряду с металлокомплексами, исследованными в [4].

Соединения синтезированы по методикам, описанным в [5, 6], чистота и индивидуальность веществ контролировались методами элементного анализа, TCX, масс-спектрометрии и ПМРспектроскопии. В качестве растворителя использовался этанол.

Спектры поглощения измерялись на спектрофотометре "Evolution 600" ("Thermo Scientific"). Спектры люминесценции при комнатной температуре и температуре жидкого азота (77 К) измерялись на спектрометре "Cary Eclipse" ("Varian") с криостатом "Optistat DN" ("Oxford Instruments"), который позволяет осуществлять дегазацию замороженных растворов методом циклической откачки до 10⁻³ атм. Квантовые выходы излучения определялись по стандартной методике с погрешностью 10% при использовании в качестве эталона ZnTPP с квантовым выходом флуоресценции при комнатной температуре 0.03 [7] и фосфоресценции в замороженном растворе 0.015 [8]. Времена жизни фосфоресценции оценивались на основании экспоненшиальных зависимо-

Рис. 1. Структура изученных соединений: $1 - H_2$ АТРР-ЕDTA, $2 - H_2$ АТРР-DTPA, $3 - H_2$ АТРР-LuEDTA, $4 - H_2$ АТРР-LuDTPA.

Рис. 2. Спектры флуоресценции: H_2 TPP – 1, 2; H_2 ATPP-DTPA – 3, 4; H_2 TPP+HCl – 5. λ_{BO36} = 555 нм, T = 298 K (1, 3), T = 77 K (2, 4, 5).

стей *I*₀/*I* от *t* при варьировании времени задержки миллисекундного излучения.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Спектрально-люминесцентные свойства изученных соединений приведены в табл. 1, из которой следует, что исследуемые соединения по спектральным характеристикам близки к незамещенному H₂TPP. Все они имеют полосу Соре в области 413-415 нм и четыре Q-полосы в области 515-650 нм. Различия в $\lambda_{\text{погл}}^{\text{max}}$ для всех полос составляют не более 3 нм. Интенсивности соответствующих полос также близки: коэффициенты экстинкции 300000–400000 M^{-1} см⁻¹ для В-полос и 15000–20000 М⁻¹ см⁻¹ – для полосы Q_{IV} с характерным для этио-типа соотношением интенсивности Q-полос [9]. Незначительность батохромного сдвига при введении аминозаместителя в фенильный цикл связана с неплоской геометрией ТРР и его производных – фенильные циклы вкладываются в В- и Q-полосы лишь опосредовано, через индуктивный эффект мезо-углеродов [9].

Спектры флуоресценции этанольных растворов всех комплексов при комнатной температуре и температуре жидкого азота содержат два колебательных максимума (647–650 и 715–720 нм) (рис. 2). Квантовый выход флуоресценции у всех соединений при 298 К — величина порядка 3–6%: в замещенных несколько выше. При замораживании (77 К) полосы флуоресценции сужаются и незначительно сдвигаются гипсохромно, γ^{fl} увеличивается и достигает 10%, в замещенных с тяжелым атомом в лиганде выше, чем без него (табл. 1).

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 44 № 5 2010

ЛЮМИНЕСЦЕНЦИЯ СВОБОДНЫХ ОСНОВАНИЙ

							1	-
Образец	$\lambda_{max}^{\text{погл}}, \text{ HM}$	λ_{max}^{fl} , нм	$\gamma^{\rm fl}$	λ_{max}^{fl} , нм	$\gamma^{\rm fl}$	λ_{max}^{ph} , нм	$\gamma^{ph}_{850} \times 10^5$	γ_{Σ}^{ph}
		298 K		77 K				
H ₂ TPP [10]	415		0.10		0.038	650	4.4	0.001
	514	650		647		716		
	546					789		
	592	715		715		860		
	649							
H ₂ ATPP-EDTA	413		0.059		0.108	650	4.8	0.005
	513	650		649		720		
	549					780		
	590	716		715		829		
	646							
H ₂ ATPP-DTPA	414							
	514	651		647		651		
	549		0.033		0.041	714	1.6	0.025
	590	716		716		822		
	646							
H ₂ ATPP-LuEDTA	414							
	513	650		647		648		
	548		0.039		0.091	720	1.0	0.003
	590	716		716		850		
	646							
H ₂ ATPP-LuDTPA	417		0.032		0.092	650	2.2	6×10^{-4}
	515	656		650		714		
	551					784		
	596	721		716		854		
	651							

Таблица 1. Спектрально-люминесцентные свойства изученных соединений (этанол, $\lambda_{B036} = 555$ нм)

Примечание. λ_{max}^{norn} и λ_{max}^{fl} – максимум полос поглощения и флуоресценции, λ_{max}^{ph} – максимум полосы фосфоресценции, γ_{850}^{ph} – квантовый выход фосфоресценции в области 850 нм, γ_{Σ}^{ph} – суммарный квантовый выход

многополосного долгоживущего излучения.

Фосфоресценция в области 850 нм, соответствующая излучению из T_1 -состояния и совпадающая по положению с фосфоресценцией H₂TPP [9], проявляется в виде отдельной полосы только для комплексонатзамещенных (рис. 3), для остальных соединений – в виде остаточного излучения. Кроме этой полосы в спектрах долгоживущего излучения замороженных этанольных растворов всех соединений проявляются полосы в области флуоресценции (650 и 720 нм), а также полоса в области 785 нм. Суммарный квантовый выход многополосной долгоживущей люминесценции превышает известный из [9] выход фосфоресценции H₂TPP, измеренный для полосы на 859 нм, более чем на два порядка (табл. 1). Эксперименты показали присутствие всех перечисленных выше полос долгоживущего излучения и в незамещенном H_2 TPP. Времена жизни излучения с максимумами при 785 и 850 нм, измеренные для H_2 TPP в этаноле, различаются: 19.6 и 6.5 мс соответственно, что свидетельствует о принадлежности этих полос различным формам молекулы.

Можно предположить, что полосы при 650 и 716 нм являются замедленной флуоресценцией (**3Ф**), а полоса при 785 нм – фосфоресценцией фотопродукта, структура которого обусловлена образованием в замороженных растворах координационного комплекса с растворителем или кис-

Рис. 3. Спектры долгоживущего излучения: $1 - H_2$ АТРР-ЕDTА, $2 - H_2$ АТРР-LuEDTА, 3 - протонированный H_2 ТРР. T = 77 К и $\lambda_{BO36} = 555$ нм.

лородом либо фотокатиона по пирролениновым атомам азота, электронная плотность на которых увеличивается при возбуждении [10, 11]. Фосфоресценция протонированной формы H_2TPP имеет максимум в области 785 нм (рис. 3), что согласуется с предположением о катионном характере фотопродукта. Однако спектр возбуждения долгоживущего излучения нейтрального раствора H_2TPP при регистрации на 785 нм совпадает со спектром поглощения координационного комплекса по внутрициклическим азотам и не содержит полосы при 658 нм, наиболее интенсивной Qполосы поглощения протонированной формы. При регистрации в полосах 650 и 850 нм форма спектра возбуждения совпадает со спектром поглощения

400 го но 1/1/2 1/1/2 200 1/1/1 100 0 350 400 450 500 550 600 650 Длина волны, нм

Рис. 4. Спектры возбуждения H_2 ТРР при T = 77 К: 1 - при регистрации в полосе 650 нм, 2 - при регистрации в полосе 785 нм.

Рис. 5. Спектры долгоживущего излучения H₂TPP при температурах, К: *1* – 298, *2* – 220, *3* – 150, *4* – 77.

нейтральной формы H_2 TPP (рис. 4). Фосфоресценция металлокомплексов описываемых соединений имеет максимум в области 780 нм [4], что также косвенно свидетельствует об образовании координационного комплекса по пирролениновым атомам азота в возбужденном состоянии.

Качественная оценка основности соединений сделана на основе соотношения концентрации нейтральной и протонированной форм в спектрах поглощения растворов одинаковой концентрации в одном растворителе с одинаковой концентрацией HCl (10^{-5} M). Согласно этой оценке, основность соединений уменьшается в ряду: H₂TPP > H₂ATPP-EDTA > H₂ATPP-LuDTPA > > H₂ATPP-LuEDTA > H₂ATPP-DTPA. Положение соединения в ряду характеризует вероятность взаимодействия избыточной электронной плотности пирролениновых азотов с протонодонорным или электроноакцепторным окружением. В спектрах долгоживущего излучения последних двух членов ряда практически не проявляется полоса при 785 нм, соответствующая фосфоресценции фотопродукта, что свидетельствует о меньшем вкладе этого канала в расселении триплетносостояния молекулы для соединений с го меньшей эффективностью взаимодействия по пирролениновым азотам. На рис. 5 приведены спектры долгоживущего излучения Н₂ТРР в зависимости от температуры, которые свидетельствуют об увеличении интенсивности соответствующего фотопродукту излучения по мере понижения температуры, в то время как в жидком растворе поглощение и люминесценция соответствуют нейтральной форме молекулы. Это означает, что данный обратимый фотопродукт стабилизируется в твердых средах, где отсутствует броуновское движение, разрушающее комплексы,

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 44 № 5 2010

ЛЮМИНЕСЦЕНЦИЯ СВОБОДНЫХ ОСНОВАНИЙ

Соединение	O ₂	H ₂ TPP	H ₂ ATPP-EDTA	H ₂ ATPP-LuEDTA	H ₂ ATPP-DTPA	H ₂ ATPP-LuDTPA
I ₆₅₀ /I ₈₅₀	+	13.3	15.1	20.6	19.8	14.7
	_	11.1	14.6	20.3	15.8	13.2
I ₇₈₅ /I ₈₅₀	+	19.8	6.5	4.0	1.4	4.9
	—	15.6	5.8	1.9	0.9	4.7

Таблица 2. Влияние кислорода на эффективность замедленной флуоресценции исследуемых соединений

Примечание. *I*_{XXX} – относительная интенсивность излучения на соответствующей длине волны. Знак "+" означает стандартную насыщенность раствора воздухом, "–" – частичную дегазацию раствора.

результатом возбуждения которых является фотопродукт. После размораживания этих растворов спектральные характеристики растворов полностью восстанавливаются.

В [12, 13] показано, что особенности закрепления органических молекул в твердых матрицах с помощью специфических взаимодействий увеличивают эффективность образования фотокатионных форм в твердых средах по сравнению с жидкими. Результаты, приведенные в табл. 2, показывают, что частичная дегазация растворов уменьшает выход фотопродукта ($\lambda_{max} = 785$ нм), т.е. не исключено его образование через координационный комплекс с участием кислорода. Это означает, что расселение триплетных уровней в изучаемых соединениях осуществляется не только излучательным путем через фосфоресценцию в области 850 нм, но и за счет образования замедленной флуоресценции $(\lambda_{max} = 650 - 716 \text{ нм})$ и фотопродукта ($\lambda_{max} = 785 \text{ нм}$). Чем выше выход этих каналов, обусловленных межмолекулярными взаимодействиями, тем меньше относительная интенсивность полосы фосфоресценции в области 850 нм. Как следует из табл. 2, менее эффективно образование фотопродукта в замещенных H₂TPP. По-видимому, фосфоресценция фотопродукта более эффективна, нежели свободного основания, так как суммарный выход многополосного долгоживущего излучения на два порядка выше известного из литературы для H₂TPP с полосой на 850 нм [9]. Это согласуется с результатами, приведенными в [4] для металлокомплексов ($\lambda_{ph} = 780$ нм, $\gamma_{ph} = 0.1-4\%$), структура которых, по-видимому, близка к структуре фотопродукта.

Механизм образования замедленной флуоресценции (3Ф) в растворах циклотетрапирролов сложно объяснить обычной T-T-аннигиляцией. В условиях эксперимента для 3Ф Р-типа концентрация вещества — 10^{-5} моль/л —недостаточна [14]. Время жизни излучения с максимумом на 650 нм, измеренное для H₂ATPP-LuEDTA, составило 27.3 мс, а на 850 нм — 5.6 мс, что также не согласуется с механизмом, предложенным в [14]. Кроме того, показано, что частичная дегазация раствора уменьшает выход 3Ф (табл. 2). Этот факт позволяет предполагать образование 3Φ через некий комплекс соединения в триплетном состоянии с растворенным кислородом, который конкурирует с каналом образования фотопродукта. Аналогичные выводы о механизме образования 3Φ для циклотетрапиррольных соединений приведены в [15, 16]. Следует отметить, что в современной литературе по изучению фосфоресценции ТРР и его производных также зафиксирована 3Φ [17, 18]. Отсутствие данных о полосах на 650, 712 и 785 нм в [9] может быть связано с другим растворителем, а также с использованием в тех экспериментах для регистрации фосфоресценции узкополосного светофильтра.

Сложные заместители, содержащие гетероатомы, влияют не только на эффективность образования протонированной формы, как показано выше, но и на относительный выход 3Ф, характеризующийся величиной I_{650}/I_{850} , которая увеличивается в ряду: H₂TPP < H₂ATPP-LuDTPA < < H₂ATPP-EDTA < H₂ATPP-DTPA < H₂ATPP-LuEDTA (табл. 2)

Из табл. 2 видно, что введение заместителей в молекулу порфирина стимулирует выход ЗФ, в то время как выход фотопродукта уменьшается. Различие этих рядов указывает на существование конкуренции каналов, образующих многополосное долгоживущее излучение при взаимодействии триплетных молекул с окружением. Введение тяжелого атома лютеция в комплексон, находящийся на периферии свободного основания порфирина, не увеличивает квантовый выход фосфоресценции, в отличие от координации его в качестве центрального иона в металлопорфирине, как показано в [10].

При возбуждении в полосе Соре при 77 К в спектрах долгоживущего излучения наряду с описанным выше длинноволновым появляется излучение на 470–530 нм, время жизни которого 1.5–2 мс (рис. 6). Излучение такого характера, обнаруженное в [9] для ZnTPP, отнесено авторами к 3Ф из высоковозбужденных состояний. Обычная коротковолновая флуоресценция из высоковозбужденных состояний наблюдается только для ряда координационных комплексов H₂TPP с металлами, что согласуется с

Рис. 6. Спектры долгоживущего излучения: $1 - H_2$ ATPP-LuDTPA, $2 - H_2$ ATPP-DTPA. T = 77 K, $\lambda_{B036} = 400$ нм.

обсуждаемой выше возможностью образования координационных комплексов с участием растворенного кислорода и растворителя для изученных соединений в замороженных растворах, которые могут быть и источниками коротковолновой 3Φ . Следует заметить, что обнаруженное многополосное долгоживущее излучение нельзя отнести к излучению примесей, поскольку неоднократная проверка чистоты этих соединений набором физико-химических методов показала, что примеси, не превышающие 1-2%, могут принадлежать только незамещенному H_2TPP , что не может быть источником обсуждаемых полос, интенсивность которых на уровне интенсивностей основного соединения.

ЗАКЛЮЧЕНИЕ

Приведенные результаты показывают: 1) для безметального H_2 TPP (T = 77 K, этанол) наблюдается многополосное долгоживущее излучение, в котором наряду с фосфоресценцией в области 850 нм — излучением из триплетного возбужденного состояния – присутствует ЗФ, механизм образования которой обусловлен промежуточным комплексом с кислородом, и фосфоресценция фотопродукта, возникающего при взаимодействии возбужденного Н₂ТРР с молекулами растворителя; 2) фосфоресценция в индивидуальной полосе 850 нм, а также суммарное долгоживущее излучение наименее эффективны для комплексонатзамещенных производных с тяжелым атомом в лиганде. Суммарный квантовый выход долгоживущего излучения увеличивается за счет образования ЗФ и фотопродукта при взаимодействии с молекулами растворителя при температуре 77 К. Введение заместителей увеличивает квантовый выход 3Φ , в то время как выход фосфоресценции фотопродукта уменьшается; 3) при возбуждении в полосу Соре наряду с длинноволновым долгоживущим проявляется коротковолновое излучение миллисекундной длительности, природу которого необходимо изучать дополнительно; 4) установлено влияние дегазации растворов на интенсивность 3Φ изученных соединений, что может быть использовано для оценки присутствия кислорода в растворах.

Работа частично поддержана ФЦП "Научные и научно-педагогические кадры инновационной России 2009–2013", мероприятия 1.1, № 02.740.11.0444; 1.2.1, № П1128; 1.3.2, № П64 и НШ- 4297.2010.2.

СПИСОК ЛИТЕРАТУРЫ

- 1. Gunes S., Neugebauer H., Saricifici N.S. // Chem. Rev. 2007. V. 107. № 4. P. 1324.
- 2. Evans R., Douglas P. // Applied Materials & Interfaces. 2009. V. 1. № 5. P. 1023.
- 3. Evans R., Douglas P., Winscom Ch. // Coord. Chem. Rev. 2006. V. 250. P. 2093.
- 4. Кузнецова Р.Т., Ермолина Е.Г., Гадиров Р.М., Майер Г.В., Семенишин Н.Н., Русакова Н.В., Коровин Ю.В. // Химия высоких энергий. 2010. Т. 44. № 2. С. 134.
- 5. Semenishin N., Rusakova N., Mazepa A., Korovin Yu. // Macroheterocycles. 2009. V. 2. № 1. P. 57.
- Русакова Н.В., Семенишин Н.Н., Коровин Ю.В. // Докл. НАН Украины. 2009. № 7. С. 138.
- Tsvirko M., Stelmakh G., Pyatosin V., Solovyov K., Kachura T., Piskarskas A., Gadones R. // Chem. Phys. 1986. V. 106. P. 467.
- 8. *Пятосин В.Е., Цвирко М.П.* // Опт. и спектр. 1991. Т. 70. № 2. С. 379.
- Кузьмицкий В.А., Соловьев К.Н., Цвирко М.П. // Порфирины: спектроскопия, электрохимия, применение / Под ред. Ениколопяна Н.С. М.: Наука, 1987.
- Кузнецова Р.Т., Ермолина Е.Г., Гадиров Р.М., Майер Г.В., Семенишин Н.Н., Журавлёв С.А., Русакова Н.В., Коровин Ю.В. // Опт. и спектр. 2009. Т. 106. № 5. С. 750.
- 11. Honda T., Kojima T., Fukuzumi S. // Chem. Commun. Communication. 2009. P. 4994.
- Савенкова Н.С., Кузнецова Р.Т., Светличный В.А., Майер Г.В., Иванова С.С., Стужин П.А., Калашникова И.П., Томилова Л.Г. // Опт. атм. и океана. 2007. Т. 20. № 3. С. 229.
- Кузнецова Р.Т., Майер Г.В., Манекина Ю.А., Тельминов Е.Н., Арабей С.М., Павич Т.А., Соловьёв К.Н. // Опт. и спектр. 2008. Т. 104. № 2. С. 236.
- 14. *Паркер С.* Фотолюминесценция растворов. М.: Мир, 1972.
- 15. Баштанов М.Е., Дроздова Н.Н., Красновский А.А.мл. // Квантовая электроника. 1999. Т. 29. № 3. С. 230.
- 16. Левин П.П. // Докл. АН. 2003. Т. 388. № 2. С. 212.
- Oliveira A.S., Licsandru D., Boscencu R., Socotenu R., Nacea V., Ferreira L.F.V. // Int. J. Photoenergy. 2009. V. 2009. ID 413915. P. 10.
- Korinek M., Klinger P., Dedic R., Psencik J., Svoboda A., Hala J. // J. Lumin. 2007. V. 122–123. P. 247.

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 44 № 5 2010