УДК 544.174.2

Н. С. Еремина, К. М. Дегтяренко, Р. М. Гадиров, Т. Н. Копылова, Г. В. Майер, Л. Г. Самсонова, А. В. Кухто

### ЭЛЕКТРОЛЮМИНЕСЦЕНЦИЯ ПОЛИМЕРНЫХ НАНОКОМПОЗИТОВ HA OCHOBE PFO-POSS

Исследовано влияние состава излучающих слоев на основе полифлуорена, содержащего сегменты полиэдраль олигомерного силсесквиоксана (PFO-POSS), на их электролюминесцентные характеристики: вольтамперные, вольтяркостные, спектральные.

Ключевые слова: органо-неорганический полимер, электролюминесценция.

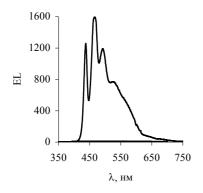
#### Введение

За создание полупроводниковых полимеров группе ученых была присуждена Нобелевская премия [1, 2]. С тех пор интерес к этим материалам не ослабевает благодаря уникальности их свойств и возможности применений в академических исследованиях и индустрии создания новых материалов для электролюминесцентных устройств, солнечных ячеек, сенсоров и т. д. Вместе с тем сопряженные полимеры с неорганическими группами долгое время не были исследованы. Гибридные органо-неорганические полимеры содержат сегменты полиэдраль олигомерного силсесквиоксана (POSS), которые приводят к улучшению характеристик полимеров: высокой термической стабильности на воздухе, хорошей адгезии к ряду субстратов и т. д. Эти полимеры устойчивы к окислению и деградации под действием УФ-излучения.

**Целью** данной работы является исследование спектров электролюминесценции (ЭЛ), вольтамперных (ВАХ) и вольтяркостных характеристик (ВЯХ) электролюминесцентных устройств на основе полифлуорена – POSS (PFO-POSS), а также на основе PFO-POSS, допированного замещенными бифенилила (PAP130 и 191). Структурные формулы исследованных соединений представлены на рисунке 1.

Рис. 1. Структурные формулы исследуемых соединений.

#### Методы эксперимента


Для исследования электролюминесцентных свойств пленок PFO-POSS были созданы органические электролюминесцирующие структуры (ОЭЛС): ITO / PEDOT (80 нм) / PFO-POSS (60 нм) /катод (I).

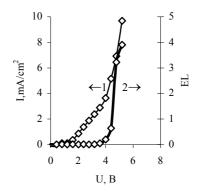
РЕДОТ и раствор PFO-POSS в хлороформе наносили на ITO (анод) методом центрифугирования. Толщину сформированных пленок измеряли на микроинтерферометре Линника. Катоды {CaMg (150 нм) /Al (50 нм) или MgAg(150 нм) /Al(50 нм)} напыляли на поверхность излучающих слоев методом термического испарения в вакууме (10<sup>-5</sup> торр). Толщину напыленных слоев контролировали с помощью кварцевого генератора. На металлический электрод подавали отрицательный потенциал, а к прозрачному электроду – положительный. ВАХ и ВЯХ снимали на специально разработанном комплексе. ЭЛ регистрировали на ССD спектрометре Avantes.

#### Результаты и их обсуждение

При исследовании ЭЛ свойств структуры анод/PFO-POSS/катод выявлено, что под действием приложенного постоянного напряжения появляется яркое свечение синего цвета.

Спектр электролюминесценции ОЭЛС (I) имеет структурированный характер с тремя узкими полосами при 438, 468, 495 нм и плечом с максимумом при 532 нм (рис. 2). Полученные результаты практически совпадают с данными работы [3]. Измерение ВАХ и ВЯХ показало, что ЭЛ разгоралась при невысоких значениях напряжений (Uпор~4,0В) (рис. 3, кривая 2). Наблюдалась хорошая воспроизводимость ВАХ и ВЯХ для нескольких ОЭЛС с излучающей пленкой PFO-POSS, сформированных в одном эксперименте.





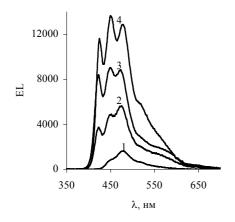


Рис. 2. Спектр ЭЛ структуры ITO/PEDOT/PFO- POSS /CaMg/Al.

Рис. 3. BAX (1) и BЯX (2) структуры: 1- ITO/PEDOT/PFO- POSS /CaMg/Al.

Были проведены исследования по усилению ЭЛ PFO-POSS в синей области спектра за счет использования замещенных бифенилила PAP130 и 191. Ранее проведенные нами исследования показали, что длина волны максимума электролюминесценции этих соединений в поливинилкарбазоле составляет соответственно 478 и 477 нм. Для модифицирования PFO-POSS в раствор полимера вводили добавку люминофора PAP 130 и формировали структуры ITO/PEDOT/PFO-POSS:PAP130/MgAg/Al (II). Измерения ВАХ и ВЯХ показали, что интенсивность свечения ОЭЛС (II) в несколько раз выше по сравнению с ОЭЛС (I) при сравнимых  $U_{\text{пор}}$ . В спектрах ЭЛ ОЭЛС (II) увеличилась интенсивность полосы с  $\lambda_{\text{макс}} = 475$  нм (рис. 4, кривая 2), совпадающей, как это следует из рисунка 5 (кривая 1), с длиной волны максимума ЭЛ РАР130 в РVС. Однако ОЭЛС II оказалась нестабильной, интенсивность свечения быстро падала в процессе работы структуры (II) при постоянном напряжении (8 В) на воздухе. Это нашло отражение в спектре ЭЛ ОЭЛС II : интенсивность полосы с  $\lambda_{\text{макс}} = 475$  нм уменьшалась (рис. 5, кривые 2, 3) и спектр стал практически соответствовать спектру ОЭЛС I (рис. 5, кривая 4). Такое изменение характера спектра ЭЛ указывает на низкую электрическую стабильность РАР130 в PFO-POSS.

В другом эксперименте вместо PAP130 использовали люминофор 191, молекула которого в бифенилиловом фрагменте не содержит аминофенил. Были сформированы структуры, в которых на анод ITO/PEDOT наносили пленку (~100 нм) из композиции PVC:191:толуол, а на нее PFO-POSS из хлороформа. Готовые структуры имели строение: ITO/PEDOT/PVC:191/PFO-POSS /CaMg/Al (III). Спектр ЭЛ таких структур имеет вид, представленный на рисунке 4 (кривая 1). По сравнению со спектром структуры I, в которой

PFO-POSS без добавок (рис. 4, кривая 2), в нем присутствует полоса с  $\lambda_{\text{макс}} = 485 \text{ нм}$ , совпадающая с длиной волны максимума электролюминесценции 191 в PVC (рис. 5, кривая 3).



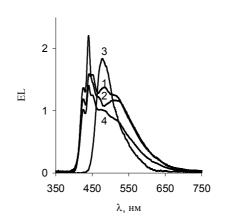



Рис. 4. Спектры электролюминесценции ОЭЛС: 1- ITO/PEDOT/PVC+PAP130/ MgAg /Al; 2-ITO/PEDOT/PFO-POSS:PAP130/MgAg/Al (первое измерение); 3-ITO/PEDOT/PFO-POSS:PAP130/MgAg/Al (третье измерение); 4- ITO/PEDOT/PFO- POSS /MgAg/Al.

Рис. 5. Спектры электролюминесценции ОЭЛС: 1- ITO/PEDOT/PFO- POSS:191/CaMg/AI; 2- ITO/PEDOT/PFO- POSS /CaMg/AI; 3- ITO/PEDOT/PVC+191/CaMg/AI; 4- ITO/PEDOT/PVC:191/PFO-POSS/CaMg/AI (после различных исследований).

Двухслойная структура (III) оказалась более стабильной по сравнению со структурой I: при подключении к постоянному напряжению (U = 8 B) интенсивность ЭЛ структуры I в процессе работы снижалась быстрее (~в 4 раза) по сравнению со структурой (III). Важно, что спектр ЭЛ структуры III после различных исследований практически не менялся. Это свидетельствует о том, что причиной снижения интенсивности свечения ОЭЛС является не деструкция веществ (PVC, 191, PFO-POSS), а уменьшение площади свечения на границе пленка PFO-POSS/CaMg/Al за счет негативного воздействия окружающей среды (диффузии кислорода и паров воды через катод) на активную область ОЭЛС. Для защиты структур от воздействия внешней среды их закрывали стеклом с использованием фотополимеризующегося клея LOCTITE 352. Результаты показали, что используемый прием замедляет процесс деградации ОЭЛС и может быть применен для увеличения рабочего времени структур и предупреждения их механического повреждения во время эксплуатации.

#### Выводы

Таким образом, структуры ITO/PEDOT/PFO-POSS/CaMg/Al и ITO/PEDOT/PVC:191/ PFO-POSS/CaMg/Al перспективны для получения в лабораторных условиях светодиода синего цвета благодаря хорошим пленкообразующим и электролюминесцирующим свойствам полимерных слоев.

#### Благодарности

Авторы выражают благодарность В.К. Ольховику, Н.А. Галиновскому, В.Е. Агабекову за предоставленные замещенные бифенилила (РАР130 и 191).

Исследование выполнено при поддержке гранта РФФИ – офи\_м № 09-02-12083 и госконтракта № П1128 мероприятия 1.2.1 ФЦП «Научные и научно-педагогические кадры инновационной России».

#### ЛИТЕРАТУРА

- 1. Heeger A. Semiconducting and metallic polymers: the fourth generation of polymeric materials / A. Heeger // Synth. Met. 2002. Vol. 125. P. 23-42.
- 2. Shirakawa H. / The discovery of polyacetylene film: The dawning of an era of conducting polymers / H. Shirakawa // Synth. Met. 2002. Vol. 125. P. 3-10.
- 3. Xiao S. Stabilization of Semiconducting Polymers with Silsesquioxane / S. Xiao, M. Nguyen et al. // Adv. Funct. Mater. − 2003, № 1. − P. 25-29.

## Анотація. Н. С. Ерьоміна, К. М. Дегтяренко, Р. М. Гадіров, Т. М. Копилова, Г. В. Майер, Л. Г. Самсонова, А. В. Кухто. Електролюмінесценція полімерних нанокомпозитів на основі PFO-POSS.

Досліджено явище впливу складу випромінюючих шарів на основі поліфлуорену, що містить сегменти поліедраль олігомерного сілсесквіоксану (PFO-POSS), на їх електролюмінесцентні характеристики: вольтамперні (BAX), вольтяскравісні (BЯX), спектральні.

Ключові слова: органо-неорганічний полімер, електролюмінесценція.

# Annotation. N. S. Eremina, K. M. Degtjarenko, R. M. Gadirov, T. N. Kopylova, G. V. Mayer, L. G. Samsonova, A. V. Kuhto. Electroluminescence of polymeric nanocomposites on the base of PFO-POSS.

The influence of composition of the radiative layers on the base of polyfluorene, which contains polyhedral segments of olygomeric cylsesquioxan (PFO-POSS), on their electroluminescent characteristics (volt-amperic, volt-brightness, spectroscopic) are studied.

Key words: organic-inorganic polymer, electroluminescence.

Надійшла до редакції 20.03.2010.